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Abstract

Suppose a measure H dominates a measure N in the ordering induced
by the excessive functions of a transient Markov process. Rost shows
than N can be represented as the distribution of the process stopped
at a randomized optional time and started with initial distribution
M. In this paper we introduce the shift operatar to the class of
randomized optional times, inducing the class of randomized quasi-
terminal times and that of randomized terminal times. We analyze the
algebraic properties of these classes and obtain some compactness
results for the class of randomized quasi-terminal times. Some appli-

cations, including remplissage by hitting times, are presented.

... - . . . . <& .I . -' . .- - - U
- . . . - - - - . . > - - '
! R A S AR I L S A S
. P W S W N W P




S

IR A

AN R R P A ML A e

. e A < - v
AdEAS EAE s RN Sl A A el A it Al M B Sk Se i i

1. Introduction. Suppose we have a Markov process X on a suitable

state space S with Borel 0 -~ algebra S. If A is a measurable subset

of S and M an initial distribution for fhe process, then the Y - hitting
distribution of A is defined by starting the process with distribution
U and running it until it hits A for the first time. This probabilistic
construct has close links with the balayage of measures, a potential -
theoretic construct, and plays a central role in probabilistic potential
theory. (The geometric meaning of these concepts becomes clearer when
A is the boundary of an open connected set G and U is required to have
support in G.)

In earlier work ([7], [8], [9)) the authors investigated the
reverse of this construction, the so-called inverse balayage problem.
One is given a distribution N on A and tries to characterize the family
of measures whose balayage onto A is n. For finite state Markov chains
_ rather straightforward techniques yield a complete description of the
convex set of measures which balayage onto the given Nn. The same kind
of analysis works for a diffusion on an interval, but more sophisticated
techniques are required for general state spaces.

The questions arising in the inverse balayage problem are closely
connected with Skorokhod's problem and work of Rost. Rost [12] shows
that if Y dominates n in a partial ordering defined by the excessive
functions for X, then Nh can be realized as the distribution of the
process started with initial distribution U and stopped using a random-

ized optional time {Tu : 0 <ucf 1} :

(1.1) ntax) = s1e¥ (x (T )¢ dx)du.
0
2
R s D S e S R U G Y ~
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One interpretation of (1.1) is that n is represented as a sort of
convex combination of optional times, and this motivates the definition
of a convexity structu ¢ on the space of randomized optional times.
The inverse balayage problem can be viewed as a search for measures
¥ which satisfy (1.1) with Tu = TA for all 0 < u < 1.

Another related result is that of Heath ([6]. Drawing heavily on
potential-theoretic work of Mokobodski and Watanabe [16]}, Heath shows
that for discrete-time processes the randomized times in (1.1) can

be chosen to be "nested" terminal times: for eachu, Tu is a terminal

time and u < v implies Tu < Tv a.s. If one specializes to finite
state Markov chains, it is easy to obtain that result using a less
sophisticated approach - we call it remplissage via hitting times and
present details in Section 5 as an example of the construction of a
randomized terminal time.

In [1]) Baxter and Chacon studied compactness properties of
randomized times in a suitable topology, and Falkner [3] remarked on
the use of this compactness to obtain (l1.1). (Several of Falkner's
related papers are listed in the references.)

Motivated by all of these ideas and results, we examine here
structural properties of randomized times in the presence of the shift
operator. Of special interest is the class of randomized quasi-terminal

times, which lies between randomized optional times and randomized

terminal times. This class is motivated by the interaction between
the shift operator and basic algebraic operations, and the requisite

definitions are given in Section 2.
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In Section 3 we discuss algebraic consequences of the definitions,
while Section 4 is devoted to sequeﬁtial compactness of qﬁasi-terminal
times. Technical questions of null sets arise and a complete generali-
zation of Baxter and Chacon's results to quasi-terminal times does not
seem possible without additional hypotheses. In Section 5 *e illustrate
some of these ideas, including applications of sequential compactness results
to Markov chains and to Rost's original proof of (1.1) for Markov processes.

2. Randomized times and random measures. The motivation for this

work comes from Markov processes, and we record some of the basic
definitions. Let S denote the Borel O - algebra on a state space
S assumed to be Lusin - that is, S is homeomorphic to a Borel subset

of a compact topological space. Let X = (9, F, Ft' X, et, P*) be a

Markov process on S. We assume that the associated semigroup Ptf(x)
Px[f(xt)] maps Borel functions into Borel functions and that the
process is right-continuous. (We follow the convention of using P
to denote both a probability and an expectation.)

Our immediate concern is less the Markov process itself than the
filtration (Ft s t 2 0), which we assume to be right-continuous and the
usual completion of the separable 0 - algebra

(2.1) FO-ofx :s<t).
t s -

One way of introducing the randomization is via the product space

{2.2) Q=QX[o,w],Ft=thB,

where B denotes the Borel sets on [0, ©]. The first class of randomized

times with which we are concerned is given, for example, in Baxter

and Chacon [1]; we use a slight variation of their definition.
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(2.3) Definition. TO is the set of mappings T :  + [0, ©] with the

properties

(a) T{(., u) is optional for each u - that is,

{w: T(w,u) <t} € Ft for each t > 0.

(b) T(w,.) is nondecreasing and left-continuous for each w.

(We define T(w, 0) = T(w, 07),)

(c) u (W) = inf {u : T(w, uy = o} <o,

The set of random measures corresponding to TO coincides with the
following class.
{(2.4) Definition. A0 is the set of random measures A on [0, ®] with
the properties

(a) Al-, s) € Fs,aus € [0, @], where A(w, s) = A(w, [0, s]).

(b) A(w, s) is right-continuous in s.
() A(w, [0, ®)) <=,
The relationship between Tb and AO is defined in the usual manner:

given T in TO define AT by
(2.5) AT(w, s) = sup{u : T(w, u) < s}.
Then AT is nondecreasing, and it is easy to check that

(2.6) {w : A (W, s) >u} = {w: T(w, v) < s}.

1 ¢ TO -+

Routine computations show that AT € AO' In fact, the mapping M
AO defined by

(2.7) M (T) = A

has the following properties.
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{(2.8) Lemma. The mapping M1 is one-to-one and onto, and its inverse

map M, : AO -»> TO is given by MZ(A) =T, » where

(2.9) T, (@, w) = inf{s : A(w, s) > u}.

We now bring in shift operators using the "big shift"”. For T € To

and s 2 0 define

(2.10a) OST(w, u) = s + T(6_W, u);
(2.10b) GSA(w, t) = A(BW, t-s)l(s < £ < ™).

The definition of Os on random measures seems to have been introduced by
&i Sharpe (see [2] for example), and @sT appears in one guise or another
throughout the literature, usually in ﬁhe simpler form of Ts' (Note that
we should really define two shifts, since one applies to random times
and the other to random measures.)

Next we define subclasses of AO and Tb suggested by the shift operator
and the applications mentioned in the introduction.

(2.11) DpDefinition. Let

A

T. = {T € TO: for all 0 <'s

1 ©, OST € T0 and

for all 0O <r<sand O

A

u, 0 T(w, u) < ©@ T(w, u)};
r - s

A, = {a € A0

for all 0 < s < =, GSA € Ao and for
all 0 < r <s, 0<¢t, OA(w, t) >0Aw, t)h
T. = {1 € Tl : for all 0 <s <w, s < T(w, u)

implies OST(w, u) = T(w, u)};

A, ={ar ¢ Al : A{w, s) < A(w, t) implies OSA(m, t) = A(w, t)}.




.

These definitions can be weakened by allowing inequalities to fail
on null sets depending on the time parameters. Thus Zldenotes the set
of A€ AO such that OSA € AO for all s > 0 and such that for 0 < r <s
there is a null set depending on r and s off which OrA(w, t) > OSA(w, t)

-~

for all t. sSimilarly, T, shall denote the analogous class of randomized

1
times. The need for these classes arises in Section 5, where we apply

our results to the representation theorem of Rost [12], and only the sets

~ ~

Al and Tl are available.

A random time in T2 has the property that T(-, u) is a terminal time
for all u. One can construct such a time by defining T(-, u) as the hitting
time of a Borel set Bu , where 0 < u < v <1 implies Bu:D Bv . (An example
of how such times arise in practice appears in Section 5.) Times in'T2

shall be referred to as randomized terminal times, while those in the

intermediate class Tl are called randomized guasi-~terminal times, since

the defining property comprises part of the definition of a terminal time.

We single out those times in Ti which correspond to ordinary random
times.

(2.12) Dpefinition. A time T in T0 is called natural if T(w, u) = T(w)

for all u < Up- Correspondingly, we call a natural T a quasi-terminal

time or a terminal time if it is also in Tl or T2, respectively.

We conclude these definitions by showing Ti and Ai are related in
the same way that TO and AO are related and also that the shift operaters

commute with Ml and M2. We leave it to the reader to check that the same

~

results apply to T1 and Al.

(2.13) Proposition. For i =1, 2, M1 and M2 restricted to Ti and Ai

respectively are inverses. Furthermore, for all s > 0
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(2.14) Ost = Mzos ' Gsml = MIOS.

Proof: Suppose T = M2(A) with A in A_. Then with u > 0 and ¥r < s

(2.15) OST(m, u)

1
4]

+ T(esw. u)

= s + inf{t : A(Gsw, t) > u}

u}

= s + inf{t : OSA(w, s+t)

tv

~ s + inf{t : OrA(w, s+t) > u}
= r + inf{t > s-r : A(Grm, t) > u}

> . .
> Orl(w, u)
Line three above translates to GSMZ(A) = Mz(GSA), and the entire sequence gives

T in Tl' Now set r=C0. If to = T(w, u) > s, then for s+tJ < to < s+t2, we have

Alw, s+t1) <uc< A{w, s+t2).

Hence, if A € A2 , A{w, s+t2) OSA(w, s+t2) and there is equality in line
four of (2.15). Further, the infimum implicit in the last line is over

t > s, so that T must be in T2.

For the other direction we have an analogous argument. Suppose r<s<t

and T € Tl. Then with A = Ml(T),

O A(w, t) = A(8 w, t-s)
s s

, = sup{u : T(Osw, u) < t~s}
ﬁf = sup{u : OST(w, u) < t}
b
= f sup{u : T(w, u) < t}
g = sup{u : T(@rm, u) < t-r} = OrA(w, t),
y irmi = i . i ition T € T, and
g_ confirming Gle(T) Ml(OsT) and A in Al If in addition € 2 an ?
z: A(w, s) = ug <u, = A(w, t), then T(w, u) > s for u > u, . which gives ‘
r:'
-
).
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OST(w, u) equal to T(w, u). 1If r is set equal to zero it follows that the
suprema above can be restricted to u > uO and that we have equality in the
fourth line, completing the proof. []

3. Algebraic structure on Ai and Ti' Suppuse X is two-dimensional Brownian

motion absorbed at the circle of radius two. If U denotes the point mass
at the origin and N a probability measure with half of its mass at the
origin and half uniformly distributed on the unit circle, then u dominates
N in the ordering induced by the excessive functions. Furthermore, N can
be realized as the process with initial distribution U stopped "half the
time" at zero and otherwise at the unit circle. If D0 is the hitting time

of (0, 0) and D, is the hitting time of the unit circle, then one could

1

think of n as the process with initial distribution i stopped at "-% D0 +

Ry "
2D1 .
We make this approach rigorous by defining an appropriate algebraic

structure on TO using AO and the mapping M_ . Before proceeding let us note

2

that the intuition behind these ideas is not new; Meyer, for example, alludes to

order and convexity properties in his discussion [11l] of Baxter and Chacon's work.
Addition and positive scalar multiplication on A0 are defined in terms
of the distribution functions.

(3.1) Definition. For Al , A2 € AO and ¢ > 0 let

(A1 + Az) (w, t) = Al(w, t) + Az(“" t);
(cAl)(w, t) = ¢ - Al(w, t).

Since the properties characterizing AO are satisfied for both AJ + A2 and

cA1 ’ AO is closed under these operations. It is easy to check that Al
i is also closed under both operations and that A2 is closed under scalar

multiplication. (The latter assertion follows from the use of ¢ - OSA =

O (cay.)
S
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However, A2 need not be closed under addition. For example if
Ai(m, t) = 1(Ti(w) <t<e® ,i=1,2,
where the Ti are finite terminal times, then the inequality Ai(m, s) <

Ai(w, t) obviously implies equality of OsAi(w, t) and Ai(w, t). However,
if
Tl(w) < s < Tz(m) <t < OsTl(w),
then (A, + A,)) (w, s) < (Al + A,) (w, t), but
Gs(Al + Az)(w, t) =1<2 = (Al + Az)(w, t).

The following result summarizes these observations.
(3.2) Lemma. The sets A0 and Al are positive cones under addition and
positive scalar multiplication, while AZ is closed under positive scalar

multiplication. Furthermore, if algebraic operations on Ti are defined by

T. + T =M2(Al +A2)

and

c - Tl = Mz(cAl),

then TO and T1 are positive cones, and T2 is closed under scalar multiplication.

Proof. The definitions of multiplication and addition on AO show these
operations satisfy the required algebraic properties. Moreover, these

properties are preserved under the bijection M_ , so that Tb is a positive

2
cone; for example,

+ aAl) = a ~(To + Tl).

Since M, maps Al onto T1 , we easily deduce that Tl is a positive

cone. Note that part of the verification uses commutativity of scalar

m . + . -

!, (a TO) (a Tl) Mz(aAO
T 2

» multiplication with the big shift:

b

- 10
i T e e T e e
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Os(cT) = Os(MZ(CA)) = MZ(OS(CA))

MZ(COSA) = cMz(OsA) =c - OSA.

We omit the remaining details. D
The effect on T of scalar multiplication is to rescale the randomizing

parameter:

cT(w, u) = inf{t : cA(w, t) > u}

inf{t : a(w, t) > uw/c} = T(w, w/e).
Addition has the effect of mixing up the values assumed by the constituent
times, an effect noted by Meyer [10]. Thus, for the example preceding

(3.2)

(Tl + Tz)(w, u) inf{r : Al(w, r) + Az(w, r) > ul
Tl(w), 0<u S 1l
Tl(w) + 'rz(u)), l] <u<x2

o , 2 <u.

AR |\ Rt
fi

T0 T
A

Order and convexity structures are defined in the obvious way.

(3.3) Definition. A, <A

1 iff Al(w, t) <A,(w, t) for all

2

t:O;T fT

1 iff Tl(m, u) < Tz(m, u) for all u > 0.

2
To ease the exposition we assume we are working on a fixed  with the
inequalities holding for all w. However, the presentation can be easily
modified so that the inequalities are valid except on a null set.

(3.4) Definition. For a_ , A

1 in A0 , let

2

(Alv Az)(w, t) = Al(w, t) Vv Az(w, .t);

(Al A Az)(w, t) = Al(w, t) A Az(w, t).

Similarly, given T T in T let

- 1702 0

P..

w A - A 3
. (r) TP (@, w = AT W, w) 9 (Tz(w, wl.
o

.
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The sets Ai and Ti have a variety of lattice properties, but we will
content ourselves with stating only a few explicitly.
(3.5) Lemma. The sets Ai and Ti , i =1 and 2, are closed under
A and V. In addition scalar multiplication and the shift operators

commute with A and V, while

(3.6) A +A,= (A V A) + (A AR
T, + T, = ('1'l A Tz) + T v T2).

Finally,

(3.7) XMz(Al XAZ) = M,(a) CMZ(Az)
LMl(Tl ‘I’\'rz) = M, (1)) CMl(Tz).

Proof. It is easy to check that AO is closed under V and A and that
the first part of (3.6) holds. Moreover, since Os commutes with both

A and V, the same assertions hold for Al.

Nowif T = MZ(Al \Y) A2) , then

T(w, u) = inf{t : A (w, t) V A (w, t) > u}
= inf{t : A (W, t) > u} A inflt : A (@, £) > u}
= Tl(w, u) A Tz(w, u).
Similarly M, (Al AA) = M, (Al) vV oM, (A2). This shows TO and T1 are

closed under A and V and also that the equations in (3.7) hold.
Finally, the second part of (3.6) follows from (3.7) and the first part

of (3.6). []

The example preceding (3.2) shows that T2 need not be closed under

V. However we do have a partial result.
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(3.8) Lemma. A2 and T2 are closed under V and A respectively.
Proof. Let A, and A, be in AZ' Suppose s < t and
>
(3.9) (A1 v Az)(w, t) (Al v Az)(w. s).
If Ai(w, t) > Ai(m, s) for i =1, 2, then

(3.10) OS(A v Az)(w, t) = (GSA1 \Y; OSAZ)(w. t)

1
= esAl(w, t) Vv @SAz(w, t) = (Al v Az)(m, t).

If Az(w, s) = Az(w, t) , necessarily Al(w, t) > Az(w, t) and

Al(w, t) > Al(u, s) for (3.9) to hold. This suffices for (3.10)

as well, and the assertion for A2 follows. The assertion for Té then

follows using the usual mapping. []

It is natural to ask about convexity properties, which requires
that we use bases of the positive cones described above. In doing this
we impose a condition for all w - or again for a full set if we use
the weaker definitions mentioned above.

(3.11) Definition. For i =0, 1, 2 , let

=T 0ir:uw <1k

Ay =A 0 {a: AW, [0, ®) < 1}.

Further, we require natural times in this context to have uT(w) = 1.

It is easy to check that M1 and M2 , restricted to Ti(l) and Ai(l).

remain inverses of one another. The sets defined in (3.11]) are those

used by Baxter and Chacon. (1].

The next result identifies extreme points. A
(3.12) Theorem. Fori=0and i =1 , Ai(l) and Ti(l) are convex sets.

The extreme points of To(l) correspond to natural times, while those of

:
5
-

Tl(l) are quasi-torminal times.

-~

S TR A D LI I
LRI N IR A AR el




e R A B S R A AR 6 A A o

T W e " LN R i ol o e or e

. Cal Tl Al fad and Madi s Jucs e el

Proof. The first assertion is immediate from the definitions. For the

second, given a € (0, 1) and A € Ai(l)' define A, = anl(a. A A)) and

1

A = max(o, (1 - a)_l(A - a)). It is easy to check that A

2 and A_ are

1 2

also in Ai(l) and that A = aA_, + (1 - a)A2 . If A is an extreme point,

1

A= Al = A2 . Thus if A(w, t) < a, Az(w, t) =0 =AW, t). If A(w, t) > a,

Al(w, t) =1 =A(w, t). Hence for each w there is a To(w) such that

Alw, t) = l(To(w) <t <. (Note that T, = ® is a possibility and also

o
that we could have done the foregoing analysis on a set of probability
one.) It is easy to check that if

To(w) 0<uc<1
T{w, u) =

_ i u>1,
then T is a natural time if A € Ao(l) and is a quasi-terminal time if
A€ Ai(l). The proof that natural and natural quasi-terminal times are
extreme points is triwvial, and details are omitted. []

Having characterized extreme points we proceed one step further and

characterize edges, i.e., faces of dimension one.

Vv (3.13) Proposition. Let T, and T, be extreme points of To(l). Then

Tl and T, define on edge iff one of the times is smaller than the other,

o 2

b

e say T. < T, and F(T.,) is trivial.

[} 1 - 72 1 ]

i— Remark. If we are working with respect to a fixed measure Pn . then the
L null sets should be interpreted with respect to that measure. Indeed, the
‘, proposition implies that edges will exist only for initial measures whose
k; support is at one point.

jf Proof. Suppose Tl and T2 are natural, Tl < T2 and F(Tl) is trivial.

;' Suppose there exist random measures Bi in Ao(l) and a,b€ (0,1), such that
- bB (0, t) + (1 - b)By(w, ) = aA (w, £) + (1 - a)A,(w, t).

"

o 14

RS t':E;thi;'i e Lo Crelate




- ~ N N TS P L N S .« w S AT e . AT m W W, A Vs e W WLl - Ve e -

B Nl Sl Al S A DA S AR NS ol Al kg o

Since Bi can have a jump only where Al or A2 has a jump, it follows that

. = + - -
for some random variable Ci , we have Bi CiATl (1 Ci) ATZ. however

it is straightforward to show that C, must be F = F - measurable,
i Tl A T2 T1

and hence constant a.s. Consequently T, and T2 define an edge.

1

Conversely, suppose T1 and T2 define an edge. Then going to the

random measures we have

L =1
7(A +A) A, V A, +2A ARl

By hypothesis there then exists a constant ¢ so that

{_ Al(m, t) V Az(w, t) = cAl(w, t) + (1 - c)Az(w, t).

If there is a set with positive measure such that T1 <t < T2 » then

1 v Az(w, t)y =1=c¢c+ (1 - c)Az(w. t),

LAVLENURFL S

which implies the constant ¢ equals one. If T2 < Tl is also possible on

a set with positive measure, we obtain ¢ equals zero. Both cases can't

occur, and we assume T1 <T

2
Now suppose F(Tl) is not trivial. Then there exists a nonconstant

F(Tl)—measurable random variable C(w) with 0 < C(w) < 1. If we define

B, £) = (1 -c@law &) +cwa,w, v

and

1}

B,(w, t) = C@a (w, t) + (1 - cw)aw, &),

then B, and B2 are both in Ao(l) and

] =41
7(B) + B,) =5(A +A,).

However, B, and B, cannot be represented as a convex combination of A, and

E{ 1 2 1

[: Az over the nonnegative reals, and that contradiction completes the proof. U
L
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4. Compactness of Al(l). In this section we deal with problems qualitatively

different from the algebraic topics of Sections 2 and 3. In particular, the
role of a fixed initial distribution pu means we shall be dealing with one family

of probability measures on (R , F) :

X - X -1
(4.1) PE(N) = Ju@p (M) = [u(@x)® (8 N .

We hereafter write P for P; .

Let 3 denote the Borel sets on {0, ©] and let C denote the set of bounded

0 .
X B - measurable functions that are continuous in t. We recall that Fo

F
is separable, so that C is generated by a countable family of functions of the
form Y(w) - £(t), where f is éontinuous. In fact we can and frequently will
assume that f is chosen from the countable family D = {exp(-rt) : r € Q}, where
Q denotes the set of nonnegative rationals.

In [1] Baxter and Chacon use ( to define a topology on Ao(l) and prove
sequential compactness of Ao(l) relative to it. This requires the following
kind of convergence.

(4.2) Definition. A sequence (An) in Ao(l) converges (BC) to A € Ao(l) if
for all 2 in C
o o
p[é‘ Z(w, )A_(w, at)) > p[é Z(w, t)A(w, t)].

Our goal is to prove the analogous result for Al(l), but that does not
scem possible without restrictions on the underlying process. Our approach is
to push as far as possible without additional assumptions and then to illustrate
hypotheses that allow stronger conclusions. Here is the general result.

(4.3) Theorem. Assume X is a Markov process satisfying the hypotheses of

Section 2 and let (An) be a sequence in Al(l). Then there exist a countable

set H , possibly empty, a subsequence (An,) and X € Al(l) such that




MR A A A I A A AR B AR ' B T S AT I AT BT IR AR T A s Attt Bttt Bl et S i o e R M) Lanih goulh S A A Sl Jendh Sl jing; j’ ™

(4.4) ObAn' > @bA (BC)

for all b, except possibly for b in the set H. Moreover, A is defined using

. . . ) =
A€ Ao(l) having the properties: OrA € Ao(l) for r in Q HUOQ, erAn'

converges (BC) to GrA for r € Q' , and if r and s are in Q' with r < b < s,

X - b ! - S !

(We subsequently abbreviate this as O A > Gbi > GSA 2)

It is tempting to try to combine A and A into one random measure in Al(l)
satisfying (4.4) for all b. Unfortunately this does not seem possible without
restrictions on the process. Before going into that point further we shall
prove Theorem (4.3). In doing so we will obtain the following corollary, which
illuminates the role of the set H.

(4.5) Corollary. Suppose K has the property that for all nonincreasing f,

oo

PlS £(t + r)i(Orw, dt)] is continuous in r. Then H = @, and (4.4) holds for all
0

b>0. []

The proof of (4.3) relies heavily on certain results from Baxter and Chacon

[1], which we record here. Baxter and Chacon define a functional a forY € Ll(P) and

v.v PP
i E T

f € C[0, ©] by

(4.6) a(y, £) = plYy(w) - [ f(t)Aa(w, dt)]

/Al ok JE ) Sin

and establish that functionals of the form (4.6) are characterized by the following

properties

“4

(4.7a) o is bilinear and positive : 0 < Y and 0 < f imply 0 < a(Y,f);




IR I . S i e Sl St i 4

(4.70) a(l, 1) = 1;Jaqy, 6] <Yl . [1£ o s

(4.7¢c) for all b, supp (f) = support (f) C [0, b] implies a(Y, f) =

alp(y|F) , £).

(We note that to fulfill the first condition in (4.7b) we need to define
Aw, {=}) as 1 - A(w, «=).)
We need two additional conditions. Let r > 0 be fixed.
(4.7d) supp(f) < [0,r) implies a(Y, £f) = O ;
-1

(4.7¢) oy, £) = a(p(Y[G)) , where G_ =6 _"(F) .

(4.8) Lemma. A functional a has the representation (4.6) with A = GrB

if and only if (4.7a-e) hold; B is unique up to P a.s. equivalence.

Proof. If A = GrB . it is easy to check that the conditions in (4.7) hold.
Conversely, as in [l1], {4.7a-c) produce A, and one need only verify it is
of the asserted form. Fixing f and defining Y as ffa(w, 4t), we can use

(4.7e) to prove

pe(y - p(r[6 )% = 0

i.e., Y is Gr—measurable. Repeating this for a countable determining class

in [0, @) gives existence of a random measure B such that A(w, 4t) =
B(erw, dt) almost surely. Moreover, (4.7d) shows that support of both

measures is {(r, ®] a.s. Redefining B, we have A = GrB. The verification that

.Ej"'.
-
"_-
»
b<
e

B is unique up to a.s. equivalence is then immediate. (Actually, we have

r

. . H
uniqueness with respect to the measure Pr on (R, F).) D

! hnother result from [1] that we shall find useful is:

t (4.9). Let S and T be in To(l) , with A and B their corresponding measures.

3 Then the following are equivalent:

» .

- (1) S, ) < T, ) aus. ;

4

3 18
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(ii) A(w, t) > Blw, t) a.s. ;

(iii) If f is nonincreasing on [0, ®] then

TE(t)A(w, dt) > [f(t)B(w, dt) a.s.

Here 1is the first step in proving (4.3).

(4.10) Proposition. Given a sequence (A ) in Al(l) , there exist a subse-

n
quence (An') and random measures {Bb : b 3 0} such that:

i (i) for each b, obAn, -+ ObBb (BC) ;

S (ii) there exists a set Qo of full measure such that

- if 0 < b < ¢, then obBb > @ B on §

k? (iil) except possibly for B in a countable set H
lim P[Y - [ff(t + c)B (9 U dt)] = P{Y * Sf(t + b)B (6 w, dt)]
ct¥tb b b

b
i: for £ a continuous nonincreasing function and Y > 0 .

Prcof. Let Q denote the rationals as before and select a subsequence An'

such that for each rational r , OrAnA converges (BC) to a limit random

measure Ar in Ao(l). Since (4.7 4, e) hold for OrAn' , they hold for Ar

and hence A is of the form © B . Thus
r rr
[e o] [+ ]
J f()A_(w, dt) = F f(t + r)B_(6_w, 4dt).
0 r 0 r r

Since A € Al(l) , it follows that for Y > 0
Qo 00
PlY - é f(t + r)An(erw, dt)] > PlY - é f(t + s)An(Brw, at) ],

provided f is nonincreasing and r < s. For r and s in Q , this inequality

persists in the limit, and we can define a set QO of full P-measure such

that (ii) holds for all b and ¢ in Q . Morcover, since g{(r) = g(r, Y, f) =
é 19
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. [+ <]
PlY J f(t + r)Br(er, dt)] is monotone on Q, we can define a countable
0

set H such that for b not in H , g is continuous across b for all Y and

f in the family D of functions f(t) = exp( - rt) , r € ¢ .
We now extract a further subsequence so that OrAn' converges to
OrBr for r € Q' =HU Q . Since Q' is also countable, the preceding

analysis applies to the new measures, and we use the same letters.

On QO we define Bb for all b by

[+ <] Lo e]

S £(t + b)Bb(be, dt) = sup J f(t + s)B_(6 w, at).
0 0 S s

Ql

b

S
S

v m

Note that the family {ObBb : b > 0} extends the family with b restricted

to Q' and that conditions (ii) and (iii) have been established.

For condition (i) we observe that (BC) convergence is valid by

definition for b in Q' . For b not in Q' we have
e o]
P{Y - [ f(t + s)B (6 w, 4t)]
0 S S
[« o]
< 1im P[Y - J £(t + b)A_.(0 w, at)]
—— 0 n b
< 1j fmf 0 dt
lim PlY - o (t + b)An'( B )1

©o

PlY - é fit + r)Br(erw, dat) ]

IA

provided r <b < s , r and s are in Q' , 0 <y , and f nonincreasing.

Since b is not in Q' , we have continuity across b for a generating class

N RENG

.--
-.'
A
N

N

¥ of C. Therefore the limit exists and can be represented using ObBb .
ET This completes the proof of (4.10). D
r
L]
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We are now able to prove Theorem {(4.3).

Proof of Theorem (4.3): It would be pleasant if we could simply drop the

b as a subscript of B and aver that we had obtained the limit random measure.
Unfortunately, that seems to be the most difficult step. Our approach is
to define a new initial measure p and a limit distribution relative to
Pp . The properties of p will enable us to define A.
Let {gs : s € Q} denote a countable family of nonnegative, bounded

continuous functions that generates B ; then with a(s) and b(r) denoting

positive normalizing constants, we define

pax) = % a(s) ! gs(b)e'bp“ (X, € axab
s € Q Y

+ z b(r)Pu(Xr € ax).
re o'
Next apply Baxter and Chacon's result to (An,) relative to the measure
Pp on (R, F) and extract yet another subsequence converging (BC) to a random
measure A € Ao(l). We then use standard techniques to obtain an Fo-measurable
random measure Pp-equivalent to A and denoted by the same letter.
Now it is clear that on path space Pi is absolutely continuous with

respect to Pp for r € Q'. Hence there exists a Radon-Nikodym derivative

W_ such that
r
u
P (Y © er - (e + r)An,(erw, dt) ]

u
r[Y - f(t + r)An,(w, dat) ]

1]

13

1

p
P Y - W J f(t + r)An,(w. dt)]

- Pp[Y . wr S f(t + r)A(w, 4dt)]
= Pt(y - [ F(L + r)A(w, dt)].
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It follows that on a set of full P-measure we have OrBr = OrA for all
r in Q'. 1In effect we can eliminate the subscript from Br for all r € Q'.
Moreover, we can retain the inequalities OrA > OSA . ¥ <s &€0Q' , on this

set of full measure.

A repetition of the argument using absolute continuity confirms that

for each s
o _1)]‘l ©
S g (ble B [Y - [ £(t + b)A_.(w, dt)]db
0 S b 0 n

converges to the same expression with A replacing An' . Indeed with our

usual ¥ > 0 and f € D, we can get an upper bound for the expression above,

to wit
bk+1 -b_u *
s g (b)e P [Y - J f(t + b )A .(w, dt)]db
kb s bk 0 k n
k

and a lower bound of the same form but using bk—l in place of bk inside the integral.

If the bk are restricted to Q', we can pass to tne limit and express the upper and

lower bounds using Bb and Bb as the random measures. Finally, assume
k k+1

the mesh size of the partition is taken smaller and use countability of

VL LT
‘

the set of discontinuity points to obtain

oo _bu .oo
(4.11) é g (ble "B IY é f£(t + b)B,_(w, at)1db

L A S s
., e
Sy e e v e e \

oo} - [oe]
= [ g (e Py - £ £(t + b)Aw, dt)ldb.
07s b 0

@

0
Since A was chosen Fo—measurable, it follows that for Y F -measurable {

[+ o]
. 0
the function G(w, b) defined as Y(w) - é f(t + b)A(w, dt) if F x B-measurable.

, X(b,w :
By assumptions on the (Px), that means P (b, )[G(m', b)] is Fo x B-measurable

22
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and Fubini's theorem than gives the B-measurability of Pu[PX(b'w)[G(u',b)]].
4
E We can argue that the corresponding expression with Bb in place of
. A is also B-measurable, since it is the limit of B-measurable functions.

V It then follows that (4.11) holds for all Borel measurable g, as well as
E the gs , from which we can conclude that for all b except those in a real

f null set,

PPlY - f £(t + b)B_(w, dt)] = EX[Y - [ £(t + D)A(w, dt)].
b 0 b b 0

Hence, except for b in a null set
OB =0A , a.s. P".

Again by Fubini's theorem, on a set of full p-measure obBb = ObA . except
for a real null set depending on w. But this means that if we use the
concept of essential limits - that is, with respect to a topology on [0, ]

in which open sets are Borel open sets minus a set of Lebesgue measure

zero - we can define a random measure A by

— e e e -

[+ o
(4.12) S f(t)A(w, dt) = ess lim [ £(t + b)A(8, w, dt),
0 b¥0 0O
g for f nonnegative, nonincreasing and continuous. Note that the monotonicity

property of @bBb and its a.s. equivalence to ObA also give

[+ o] [ o]
[ f{t)B(w, dt) = 1im [ £(t + b)Bb(Bbm, dat).
Y b¥+0 0

The key feature of (4.12) is that we obtain the same random measure

) A (! ' T -

_.: A(w', dt) for all w' of the form & eblwl Obzwz , where wl and w2

g lie in the set of full measure defined in the preceding paragraph. This
is because we can use A(Bbw , ) = A('Ob+b Wy *) = A(Ob+b w, *) in

1 2




the limit and need not worry about accumulation of null sets that would

result were we to try to use Bb directly in (4.12).

Those unfamiliar with the concepts used in (4.12) can refer to Walsh [151,
in which these topics are described and from which the F-measurability
of A follows. Since @rBr = OrA on a set of full measure, the inequalities
asserted in (4.3) have been established, and at times b not in H the conver-

gence of ObAn' to ObA is irmmediate. We have thus devised a way to "drop

the subscripts from B " - at least to the point of reducing the statement

b
to two limit measures A and A. That is enough for (4.3) and completes the
proof of the theorem. D

Without additional restrictions on the process we cannot eliminate

the need for two random measures in the statement of (4.3). In view of

the generality in which the theorem is formulated, that is not entirely

1'111 ’ v e
R
e N e e T T

unexpected, but neither is it entirely satisfactory. The difficulty is

that in regularizing A to get A € Al(l), we imposed a type of right-continuity

AN
. ’

not required for Al(l). The effect is that we cannot assert that (An')

converges to A even though we do know (An') converges to A.

L

As an example, let X be uniform motion to the right on the line and

L e 2
RS

let An correspond to the first hit of {1/n}U[1, ©). Then A evidently

corresponds to the first hit of {o}U (1, ®); in particular if Xo(w) =
0, a{w, +) puts all its weight at {0}. However, for that same W, Alw, -)

corresponds to the first hit of [1, ®) and thus is not the limit of the

A .
n

There are a variety of assumptions restricting either the process

X or the sequence (An) that enable us to make sharper assertions. The

—v v v v v~ -
B INCACACACAEAREE ~;
AENA ML RAN

first is motivated by the counterexample above.

L R B
.
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(i) Uniformity of convergence of right-continuous An. Without loss

of generality, replace the subsequence (An’) by the original sequence.
Let Zr stand for Y(w) - f(t + r) for our usual Y and f and use (Zr ’ OrA)

to denote

<<}

11
P [é zr(w, t)A(erw, dt)].

We make two assumptions:

(4.13a) for all sufficiently large n, 1lim (2_ , OA) = (2 , A ).
>0 T rn n

(4.13b) for each such 2 there is a § > 0 such that

lim sup |(z_, 0A) - (z , 04)] =o.
o 1€Q, £<6 x rn x r l

It follows from (4.13) that (An) converges to A. To see this tix

Z and the § guaranteed by (4.13b). Then
|z, &) - z, 2] < |(z, &) - (z_, 0]

+lez 02 -@ ,02)] +]z ,04)-(z,a)]

tlez,a)y -z, .
The fourth term on the right can be made small for large n, as can the
second term uniformly in r < § , by virtue of (4.13b). Fixing such an n,
we can then make the first and third terms small by choosing small r.
Hence (2 , A) = (2 , A) for a generating class of Z, which verifies the

assertion.

(ii) Markov chains with countable, stable states. The conditions

in (4.13) hold in this case, so that Al(l) is sequentially compact.

(iii) Discrete time Markov processes. In this case there is no difficulty

with null sets accumulating, and the Baxter~Chacon argument easily gives

sequential compactness of Al(l)-

At BMALEAE St Al g 0 04
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(iv) Domination of the transition probabilities. (We are indebted

to J. Glover for suggesting this condition.)

(4.14) Proposition. Suppose N is a measure an S such that
PU(X, € +) <<n(:)

for all b > 0. Then Rl(l) is sequentially compact. |

Proof. It is easy to use an absolute continuity argqument to show that

for all b € Q' , Obﬁ = GbA almost surely. Hence O A works as the limit

measure for all b and the almost sure inequalities defining Kl(l) follow

immediately. D

5. Applications. As noted in the introduction, motivation for studying

structural properties of randomized times arose from problems concerning
transient Markov processes. In this section we consider three applications
of the material from the preceding sections. In the first we use a modi-
fication of the remplissage (filling) scheme to give an explicit construction
of a randomized terminal time that realizes (1.1l), thereby solving in
Tz(l) Skorokhod's problem for finite state Markov chains. In the second
application we pursue an analogous example for a transient Ma;kov chain
with countable state space and see how (4.13) can be applied. The third
application concerns Rost's original work [12] and illustrates how the
class of randomized times could be narrowed in his context.

We begin by assuming X is a Markov chain with a countable state space
S. Let A be a finite subset of S and U a fixed probability with support

in A. Define by M(u) the set of probabilities n with support in A and such

that

(5.1) [fdn < [ffdy

26
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for all £ € E , the cone of bounded excessive functions. (The integral
in this context is just a finite sum, but in subsequent discussions we
shall interpret (5.1) as an integral over a more general space.)
We have the following result.
(5.2) Theorem. For each n in M(H) there exist an integer N < card (supp (n)),

’ N
a set of positive reals {si : 1 <1< N} with § s; = 1 and a strictly

decreasing family {Ai : 1 <i< N} of subsets of supp(n) such that:

(a) Pu(D. <w) =1, 1<1i<N, where D, = inf{n > 0: X € A_},
1 - - b 8 n i

and Al = supp (n);

1
u
() nex) =[P (x(z)) = x)au ,

where T is the randomized terminal time

T(w, u) = D, (w), u, . <u <u,

i
withu, =0 andu, =L s. .
0 1 1

Proof. 1In the filling scheme cited above one fills in the measure 1n step

by step, with each step corresponding to one time unit. In our approach

each step corresponds to one hitting time. Specifically, let uo =Wu,

”1 = 7 and Al = supp (nl). Since the function f(x) = Px(Dl < ®) is excessive,
(5.1) gives

Ho = > = p1 < =
PO, <) .I'flduo_ffldn1 Po(D <= =1.

Thus the measure ul(x) = Puo(x(Dl) = x) is a probability with supp(ul)c:

supp(nl). If ul = nl we are done. Otherwise define

t1 = max{t : nl - tul > o}
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= (1 -¢e1 -
n, =1 -t) " tiuy)

and let A, = supp(nz) §:A1 . To see that n, € M(ul), suppose £ € E and

define its réduite

rflx) = Px[f(x(Dl)) D, < o],

1

-

The function rlf is excessive, and rlf < £ , with equality on Al . Hence

Jfan, = fr fan, < fr fau = [fau, .

It follows that

{

-1
Jgan, = (1 - ¢,) "USfan, - ¢ ffdu ) < Sfan, < ffau, ,

f

confirming n, € M(pl). Setting A2 = supp(nz), the function f(x) = Px[D2 < ]

is5 excessive, and

Ho = p"1 = =
P0(p, <= =p"1(D, <) = ffap, > [fan, =1 .

Proceeding recursively, define uz(x) = Puo(x(pf = x) . If u2 =n
we have

- H - _ Ho =
nl(x) = th le(Dl) =x] + (1 tl)P [X(Dz) = x]

and need only set N = 2 , s; < t1 and s, = 1l - t1 to complete the proof.

Otherwise, we define

TR Ty

W,
o+
1

max{t : n2 - tpz > 0},

n

R S s 2
¢ B
PR

-1

)
.

ReL Ros

2 We then repeat the argqument of the preceding

and set A3 = supp(nz) ;: A

paragraph.

Since the sets Ai are strictly decreasing this procedure ends after

a+ most card (supp(n)) steps, and the constants can be identified as s1 = tl

i-1
and s, = ( ma- tj))ti » 2 <i<N, where N is the number of steps. D
1
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® N-1
v, = - - .
- [gan, = Jfdn - I s ffan, - s ffan
v, i=1
v
'.'_
G N-1
- By constructio = L s,u, onA_ - A
y construction n ill 1 N

= 1
o
.,
[ ]
- 29

. - ‘_-"_-‘"“'."‘.-... Tet ..--'.-...'.‘ -"_- * LI ..' o' e " o Lt . -“'. - e . A - - - - ~ N A el ". SN
o "_‘.'L..":“_..P ) x'ik';h'l;'z;';;‘x:.’-'\';.'-'.'-' e A, » - - . - ORI ‘.\ -.'\.‘ .~~‘.— ' ."..\_: )

AERAACR ALl el Bl o

DR A Sediind A+t S A SN 8 o4 ee e oy w‘mﬁ'ﬁv‘w

Remplissaye with hitting times also applies in the finite state

case even when (5.1) fails. One proceeds in the same fashion, but since
Di = ® is possible, the ui may be sub-probability measures, the ni may
have

mass greater than 1 and the ti must be constrained not to exceed
one -~ all of this in order to account for mass that "escapes.”
(5.3)

Theorem. Let U and N be probability measures on the finite set

A and assume A is transient for the process. Then there exist an integer

N > 0 , strictly decreasing subsets {Ai : 1 < i < N+1l} and positive constants

S; 1 < i < N such that Zsi = 1 and
B pH
nix) = 2 s;P{X(D;) = x] + (M - WH H&x) ,
i=1
X
= = <
where H_ . (x, y) = P (X(D ) =y , Do, <= .
Proof. One proceeds as in (5.2), stopping at stage N if either uN = nN
or tN > 1 . In the first case we have (5.2). In the second case, the
si are defined as before and
N
n = .Z S ui + nm r
i=1
where
' N-1
n = ? (1= t)my = w) -
If A

N+l = supp(nN - uN) » the proof will be completed by showing n_

has the asserted form. For f € E




«««««

N-1
ftan = [ fdan - I s, [ fau, - Sedu + (1 - s )/ fdu .

A i=
N i=1 AN

Since f equals its réduite er on AN . we can replace f by er above to

obtain
N-1
Jfan = [ r fam -y - Es; Jx

AN i=1 Ay

(Recall that ffduN = erfdu.) The integrals in the summation have the

Nfd“i + (1 - sN)ffduN .

form ffduN , yielding the last step:

fedn, = fr fd(n - W) = Jfd(ng - u).

It follows that N and nN - uN have the same potential and are thus equal.

It is then easy to show that nN ~ uN = nN+1 - uN+1 ., where AN+1 = supp(nw),

and this completes the proof. D

Note that the procedurc always terminates in a finite number of steps.
This contrasts with the time-step method of remplissage, which may require
infinitely many steps. However, it is easy to construct examples which
show the approach used here is generally applicable only in the finite
state case. In fact these examples motivate Theorem (4.3), which would
allow us to use a limiting process to define an appropriate randomized
quasi-terminal time, at least in the Markov chain case.

Thus, for our second applicaticn we assume X is a transient Markov
chain on a countable state space, U and N are measures satisfying (5.1)

on this countable set, and we replace the assumption of finite support

for § and n by the assumption that supp(n) is a transient set. Under

-~
¢
()

these hypotheses, (5.1) is equivalent to UG(x) > nG(x) for all x € S,

S

.
LI Y )

where G is the potential matrix.

. 8.
Y

.
o e @
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Define T(C) as inf{n >1 Xn € c} , p(c) as inf{n >0 : Xn €cl.

T, = T(supp(m)) , and D = D(supp(n)). Then B, = {x : Px(Tn < ®) <1}

cannot be emptv. In fact, since Pu[Dn < o] =1 by (5.1), we have a more

precise result.
(5.4) Lemma. If (5.1) holds, then P'(D(B)) <) = P'(p(B) <=) =1 . []

We then have the following.
(5.5) Theorem. Suppose U and N satisfy (5.1) and supp(n) is transient.
Then there exists a randomized quasi-terminal time T such that for all
X€E S

S Al _
ni{x) = é P (X(Tu) = x)du .

Proof. Let C, be a finite subset of supp(n) - B. and let A

1 o 1 =6V B -

Using the réduite as before it is easy to show that ul dominates ny in

the potential ordering, where ul and nl are the balayages of i and n onto

u

A, . By (5.4),D(A1) < ®©a.s. P are probabilities.

1 and Pn . so that ul and n

1
We will now show that the recursive procedure in Theorem (5.2) works
in this context as well. In fact, inspection of that procedure shows we

need only verify ul(x) < nl(x) for all x ¢ B0 . That being so, the set

BO will be carried intact in the iteration, .and the same proof applies.

Define, then,

ts = ’ >

S G, {x ¢ By + W, (x) nl(x)}.
N ( ;
g G, = {x € By, ul(x) < nl(x) '
N and

I.. x

2 £(x) = P (D(C; U G) < .

»

L
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Since ul(x) > nl(x) on G1

f (x)

conclude that G

x
But for all x € Bo , P (Tn

D A e e Nl Sk Sl Sk fhell A Aol S RS SN srn suls aRur M e gunr

Then f is excessive, ffdnl < ffau

1

N T —

1’ and from that we can obtain

flau, </ @1 - fidn, .
61

on G1 we have
b4
P ('r(clu Gy <w®) =1.

< o)} < 1 by definition, which leads us to

is empty, and ul(x) < nl(x) everywhere on B

1 0]

We now proceed as follows. Let (Cn n > 1) be an increasing sequence

of sets converging to supp(n) - B_ , let nn be the balayage of n onto

0

C

nUB

0’ and let Tn be the randomized terminal times constructed in

Theorem (5.2):

v
PT (x)
n

1
(5.6) ! Plix(T_ ) = xlau

p'0ix (T (w) = x)ldu = n_(x) ,

oNr

. Condition (iii) at the end

where un is the balayage of U onto Cn J B0

of Section 4 applies, so we can extract a subsequence converging (BC)

to a randomized quasi-terminal time T such that nG(x) > P¥G(x) > nnG(x)

=

for all n. S nce nn(y) > n(y) on Cn U B, , it follows that nG PEG ’

0
U
and that forces n to equal PT . D

We have relied upcn the assumption that time and state space are
countable, and it is reasonable to ask whether this assumption is indispensable.

In fact it is not, and we shall indicate how Rost's original proof remains

32
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valid with times restricted to Tl(l) , at least under the assumption of

(4.14). The first thing to record is Meyer's observation that Baxter and
Chacon's work can be extended. For the details we refer the reader to
[11] and content ourselves here with stating the relevant result.
(5.7) Theorem. Suppose X is a standard, transient Markov process with
potential kernel G. Then if (An) converges (BC) to A, for any bounded
S-measurable function f

= «©

P GEx)A (0, at)] > PMS GE(x AW, avl. []
o] 0]
Now suppose X is a standard, transient Markov process on (S , S)

and that Y and n satisfy (1.1) in that context. Rost [12] approaches

the problem of finding an S in To(l) such that n = Pg

by first obtaining

a "maximal" S such that Pg dominates N in the potential ordering. That

~

argument can be carried over to Tl(l) by using sequential compactness,

at least in the context of Proposition (4.14). The next step is to use

the potentials PgG and NG to construct a certain nonrandomized, terminal
time T that is conjoined with S to form S* = OST . With the sort of algebraic
structure introduced in Section 3, Rost shows a convex combination of

S and S’ also dominates N and thus by maximality Pg[T = 0] = 1. The form

of T coupled with an extension of Hunt's domination principle forces

equality of PgG and NG , completing the proof.

~

If one could show S' was also in Tl(l) , then the same arguments

»
MK
v
"
-

- Rost used would apply, and we could assert that there is an S in ;l(l)

- such that n = Pg , at least in the context of (4.14). We conclude by

; stating the missing fact as a lemma, omitting the proof, which is merely
a matter of tracing out the definition.

_!'
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5.8) Lemma. Suppose T € Tl(l) and S € Tl(l) . Then §" = 8§ + T o Bs is

in Tl(l) .
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